Blast.


Blast

B Riou, A Chehida

Département d’anesthésie-réanimation, CHU Pitié-Salpêtrière,
47, boulevard de l’Hôpital, 75651 Paris cedex 13

Le blast est le processus pathologique qui induit des lésions dans un organisme exposé à une onde de choc au cours d’une explosion. Bien connue de la médecine militaire, il intéresse également le médecin civil confronté à des victimes d’accidents domestiques ou industriels et, malheureusement depuis quelques années en France  [1] , des entreprises terroristes. Les lésions induites par une onde de choc sont souvent mal connues des médecins de l’urgence et des anesthésistes-réanimateurs car peu enseignées. Or, des progrès importants ont été accomplis dans la compréhension de la physiopathologie du blast, permettant un diagnostic et un triage plus sûr des victimes et d’améliorer le traitement.

PHYSIOPATHOLOGIE

Description de l’onde de pression

Une explosion génère une onde de pression statique, responsable des lésions de blast proprement dites (effet primaires). On observe également des effets secondaires dus à l’onde de pression dynamique (blessures par projectiles), des effets tertiaires (projection de la victime), et quaternaires (brûlures, ensevelissement, inhalation de fumées, irradiation)  [2] [3] . Le blasté est donc souvent un patient polytraumatisé et polycriblé, parfois brûlé.

Le blast est donc dû à une onde de pression statique qui comporte une première onde de pression positive, brève et de grande amplitude, pathogène, suivie par une onde de pression négative, sans importance physiopathologique  [4] [5] . Plusieurs paramètres caractérisent cette onde de pression : la variation de pression maximum ( D P), exprimée en bars ou en kilopascals (1 bar = 100 kPa), le temps d’ascension de la pression ( D t), et la durée de la phase de pression positive (Tpos) [4] [5] . Le  tableau I rappelle les principaux types d’ondes de pression rencontrés en fonction de ces paramètres. Le blast correspond à des ondes de choc fortes ( D P > 1 bar, D t < 1  m s)  [2] .

Tableau I. Principaux types d’ondes de pression. D’après Cudennec  [2] .

Tpos < 1 s Tpos > 1 s
D t < 1 m s 1 m s < D t > 1 s D t > 1 s
D P > 100 kPa blast blast souffle nucléaire
barotraumatisme
D P < 100 kPa bang sonique trauma sonore aigu
D P : variation de pression au passage de l’onde de pression ; D t : durée de la variation de pression ;
Tpos : durée de la phase de pression positive

Différents blasts (aérien, liquidien, solidien)

Selon le milieu ambiant au sein duquel se propage l’onde de pression, on distingue les blasts aérien, liquidien, et solidien. Dans le blast aérien, le plus fréquent, l’onde de pression ne présente qu’un pic de surpression qui se déplace à la vitesse du son, et s’amortit rapidement selon le cube de la distance parcourue.

Dans le blast liquidien, du fait du caractère incompressible du milieu liquidien, l’onde de pression comporte une succession d’ondes positives, se propageant à une vitesse de l’ordre de 1 500 m · s-1, vitesse de propagation du son dans l’eau. Les lésions sont plus graves au cours du blast liquidien, car la pression transmise est plus élevée et le temps de surpression également  [5] . Deux éléments caractérisent le blast liquidien : le rayon létal est trois fois supérieur à celui d’un blast aérien, et les parties immergées de la victime sont généralement indemnes, car l’onde de pression ne traverse pratiquement pas l’interface eau-air. Le blast liquidien se caractérise également par une très grande fréquence des lésions abdominales digestives.

Dans le cas du blast solidien, l’onde de pression est transmise par un matériau solide et incompressible au contact de la victime avec une vitesse considérable (jusqu’à 5 000 m · s-1). Le blast solidien se caractérise par des lésions osseuses et vasculonerveuses prédominantes  [4] [6] . Le pied de mine, le choc de pont sur un navire constituent des exemples militaires de blast solidien.

Facteurs lésionnels

Les principaux paramètres déterminant les lésions du blast sont le gradient de pression et, à un moindre degré, le temps d’ascension de la pression et la durée de pression positive  [2] [3] [4] [5] . En effet, l’énergie transmise varie comme le produit D P2 · Tpos  [5] . Le seuil de lésion est généralement considéré comme proche de 1 bar (100 kPa). Une surface réfléchissante est un facteur d’aggravation des lésions. Il faut souligner que les lésions sont alors plus graves du côté exposé à cette surface. La figure 1 montre les courbes de seuils lésionnels auriculaires et pulmonaires, et de mortalité  [7] .

Fig. 1. Estimation des seuils lésionnels du blast chez l’homme en fonction du gradient de pression et de la durée de l’onde de pression. SLPulm : seuil lésionnel pulmonaire ; SLTymp : seuil lésionnel tympanique. D’après Phillips  [7] .

L’amortissement rapide de l’onde de pression en milieu aérien fait que la distance de la victime à la source explosive devient un facteur déterminant des lésions et de leur gravité avec l’impression d’une loi de « tout ou rien ». Enfin, l’explosion dans un espace clos majore de manière importante les lésions de blast. Ainsi Leibovici et al  [8] rapportent un Injury Severity Score (ISS) supérieur (18 vs 4, P < 0,001) et une mortalité plus élevée (77 vs 8 %, P < 0,001) lorsque l’explosion a lieu dans un espace clos. Toutefois, il faut noter que dans cette étude  [4] la probabilité plus élevée, d’être plus proche de la source de l’explosion dans un espace enclos, n’a pas été prise en compte de manière satisfaisante.

D’autres facteurs jouent un rôle moins important en pratique. La répétition des ondes de pression aggrave les lésions. Le seuil d’apparition des lésions est plus élevé lorsque la victime est placée parallèlement à la direction de propagation de l’onde de choc, que lorsqu’elle est placée perpendiculairement à la direction de l’onde de pression. Le poids de la victime est un facteur protecteur  [2] [3] .

Lésions du blast

Lésions élémentaires

Deux mécanismes principaux sont responsables des lésions du blast  [2] [3] [4] [5] . Premièrement la variation brutale de la pression à l’intérieur des volumes gazeux enclos provoque une compression, puis une décompression brutale responsables de ruptures pariétales, en particulier au niveau pulmonaire. Deuxièmement l’accélération brutale appliquée aux tissus et aux organes est responsable de force de compression et d’arrachement. Il s’agit de lésions identiques à celles provoquées par une décélération brutale lors d’un traumatisme fermé. En ce sens, les lésions de contusion pulmonaire au cours des traumatismes fermés avec décélération brutale sont proches de celles du blast avec impaction du parenchyme pulmonaire sur le gril costal  [9] . Il est difficile de connaître le rôle d’un éventuel effet de pulvérisation au niveau des interfaces air-eau, notamment au niveau pulmonaire  [3] [10] .

Les organes comportant des volumes gazeux enclos sont donc des cibles privilégiées du blast, avec par ordre croissant de seuil lésionnel l’oreille, le poumon et le larynx, et les intestins  [2] [3] (figure 1) . Il est difficile de donner des chiffres précis d’incidence des différentes lésions d’organes, car les critères d’inclusion varient de manière importante dans la littérature en incluant selon les cas, des victimes impliquées, mais non blastées. Ainsi Hadden et al  [11] rapportent une incidence de 0,8 % du blast pulmonaire dans une série de 1 532 victimes impliquées dans des explosions, mais seulement 250 (16 %) ont été hospitalisées. Le tableau II montre des chiffres qui correspondent plus à la population de victimes blastées nécessitant une réanimation  [8] [12] .

Tableau II. Incidences des lésions auriculaires, pulmonaires, et digestives chez des victimes de blast sévère.

Katz et al  [12]
(n = 29)
Leibovivi et al  [8]
(n = 297)
Rupture du tympan 22 (76 %) 44 (15 %)
Blast pulmonaire 11 (38 %) 43 (14 %)
Blast abdominal 4 (14 %) 2 (1 %)
Lésions auriculaires

Les lésions auriculaires sont les plus fréquentes au cours du blast aérien en raison d’un seuil lésionnel très bas (0,35 à 0,7 kPa, 50 % des tympans sont perforés à 0,5 kPa)  [13] . L’onde de pression induit une rupture des tympans et des lésions de l’oreille moyenne (osselets) et interne (cellules neurosensorielles). La perforation des tympans survient dans 85 % des cas et est bilatérale dans 10 % des cas  [3] . La symptomatologie initiale comporte une surdité, des otalgies, des acouphènes, plus rarement des vertiges  [3] [10] . Les lésions de l’oreille interne conditionnent le pronostic auditif à long terme.

Lésions pulmonaires

Les lésions pulmonaires comportent : a) un oedème pulmonaire lésionnel volontiers hémorragique, dont l’apparition clinique peut être retardée de quelques heures ; b) des ruptures aériennes (alvéoles, bronchioles) qui peuvent provoquer un emphysème interstitiel, des pneumatocèles, un pneumomédiastin ou un pneumothorax ; c) des ruptures vasculaires, participant à l’inondation alvéolaire et pouvant provoquer des hémoptysies ou des hématocèles, plus rarement des hémothorax  [14] [15] . Lorsque les ruptures alvéolaires s’associent à des ruptures vasculaires, des embolies gazeuses systémiques peuvent survenir  [3] [9] . Les conséquences cardiaques ou cérébrales de ces embolies gazeuses expliquent probablement un certain nombre de décès précoces  [16] [17] . Certains travaux ont suggéré que ces brèches alvéolovasculaires se refermaient au bout de 30 min  [18] , mais ces travaux n’ont pas pris en compte le principal facteur favorisant le passage d’air à travers ces brèches, le pic de pression d’insufflation de la ventilation mécanique. Un autre facteur théorique facilitant le passage d’air est l’hypovolémie. Chez les victimes d’un blast pulmonaire, les lésions alvéolaires sont constantes, les lésions de rupture aériennes peu fréquentes, les embolies gazeuses rares.

Plus le blast pulmonaire est grave, plus l’évidence clinique ou radiologique de celui-ci est précoce. Si un retard de quelques heures peut être observé, comme dans la contusion pulmonaire des traumatismes fermés, il est difficile de croire certaines observations où un délai de 24 à 48 h entre l’explosion et l’oedème pulmonaire a été rapporté  [11] . En revanche, des anomalies majeures de l’hématose, malgré une ventilation mécanique en 100 % d’oxygène, peuvent être observées dans la première heure qui suit un blast grave.

Les lésions laryngotrachéales sont dues à l’impact du squelette cartilagineux sur la muqueuse et se traduisent par des pétéchies sous-muqueuses ou des ecchymoses étendues. Ces lésions sont importantes car les seuils lésionnels du larynx et de la trachée sont très proches de celui du poumon  [19] .

Lésions digestives

Les lésions digestives intéressent plus fréquemment le côlon que l’intestin grêle et résultent surtout de blast liquidien  [20] [21] . Il s’agit de la deuxième cause de décès des victimes blastées, après les lésions pulmonaires. Des travaux expérimentaux ont clarifié les mécanismes en testant différents types de protection  [22] . Les lésions de l’intestin grêle semble dues surtout aux effets directs de l’onde de pression sur les volumes gazeux enclos. En revanche, les lésions coliques semblent dues aux mécanismes d’arrachement. Les lésions initiales sont susceptibles d’évoluer secondairement vers la perforation selon plusieurs mécanismes possibles : ischémie par thrombose localisée ou lésion de la muqueuse évoluant vers la séreuse  [23] .

Les lésions digestives peuvent se traduire par une symptomatologie douloureuse (douleurs abdominales, ténesme), des hémorragies digestives, et un syndrome péritonéal par perforation digestive  [3] . Le problème majeur est de reconnaître les indications de laparotomie, en particulier dans les perforations secondaires  [24] .

Lésions des membres

L’amputation traumatique d’un membre est une éventualité fréquente chez les victimes situées à proximité de l’engin explosif. Des travaux de simulation ont montré que ces lésions sont bien dues à une blast aérien et non à un blast solidien  [25] . La propagation de l’onde de pression induit des déformations osseuses qui sont responsables de l’amputation traumatique. Ceci explique que ces amputations traumatiques surviennent au milieu d’une diaphyse et non pas au niveau des articulations  [25] .

Autres lésions

De très nombreuses lésions peuvent être observées chez les victimes blastées. Toutefois, il existe des controverses importantes pour savoir si ces lésions sont bien dues au blast  [3] . Il s’agit en fait d’un faux problème. En effet, à partir du moment où on reconnaît qu’il existe deux grands mécanismes lésionnels au cours du blast, la variation brutale de pression d’une part et l’accélération responsable de forces de compression et d’arrachement d’autre part, on conçoit que des lésions d’organes pleins puissent survenir essentiellement par ce deuxième mécanisme  [9] . Ainsi des lésions hépatiques, spléniques, rénales, cardiaques, encéphaliques, oculaires (hémorragie sous-conjonctivale, hyphéma, luxation du cristallin, iridodialyse), maxillofaciales (sinus, mandibules) peuvent être observées, bien que rares  [2] [3] [4] [5] [9] [26] . Il importe de souligner qu’une victime blastée est également un polytraumatisé potentiel, qui doit bénéficier d’un bilan traumatique complet.

DIAGNOSTIC ET TRIAGE

Un arbre décisionnel simple a été proposé par Cudennec et al  (figure 2) [2] . L’élément déterminant est une rupture tympanique qui signe la présence d’un blast. Cet examen simple peut être proposé comme élément de triage lors d’un afflux de victimes. Un tympan normal n’exclut pas des lésions éventuelles de l’oreille interne, mais permet d’exclure un blast pulmonaire.

Fig. 2. Arbre décisionnel simplifié pour le triage des victimes de blast. D’après Cudennec  [2] .

Une fois le blast reconnu, il convient d’en évaluer la gravité, en particulier sur le plan pulmonaire. La présence de lésions laryngotrachéales permet d’affirmer un blast grave, notamment pulmonaire, car les seuils lésionnels sont très proches  (figure 1) . L’examen radiologique pulmonaire et la gazométrie artérielle sont importants et doivent être répétés. La tomodensitométrie lorsqu’elle est possible devrait permettre une évaluation plus précoce et plus fiable des lésions pulmonaires, en particulier les ruptures aériennes (pneumatocèles, pneumomédiastin, pneumothorax limités). Seule l’échographie transoesophagienne est à même de dépister les embolies gazeuses systémiques, en particulier lors de l’institution d’une ventilation mécanique et d’une pression expiratoire positive (PEP)  [27] .

Le diagnostic des lésions digestives restent le problème diagnostique le plus difficile. La perforation d’un organe creux, parfois secondaire, doit toujours rester à l’esprit, et son diagnostic est aussi difficile chez le blasté qu’après un traumatisme fermé. La tomodensitométrie doit probablement avoir une place importante (pneumopéritoine, épanchement péritonéal), mais la laparotomie exploratrice reste souvent l’élément clef du diagnostic  [23] .

Enfin, le diagnostic des lésions traumatiques volontiers associées au blast est impératif et suit les règles habituelles de la prise en charge d’un polytraumatisé.

TRAITEMENT

Seuls les aspects particuliers du blast sont envisagés et non les aspects non spécifiques du SDRA ou du polytraumatisme fréquemment rencontré chez ces victimes.

Le traitement des lésions auriculaires comporte habituellement des perfusions de vasodilatateurs, de corticoïdes et de médicaments à propriétés hémorhéologiques. L’oxygénothérapie hyperbare a été proposée sans preuve réelle d’efficacité. Chez des patients blastés polytraumatisés, la mise en oeuvre de ces traitements peut être difficile et parfois contre-indiquée  [3] . La prise en charge par un médecin ORL doit être envisagée le plus précocement possible.

Le problème thérapeutique le plus important est celui du SDRA du blast pulmonaire. En raison du risque d’embolie gazeuse, la ventilation mécanique, surtout avec PEP, doit être évitée, lorsque cela est possible. Dans les cas de blast pulmonaire grave, la ventilation mécanique et la PEP deviennent absolument nécessaire quel que soit le risque d’embolie gazeuse. De plus, il a été suggéré que les brèches alvéoloveineuses pulmonaires pouvaient rapidement se refermer  [18] . En fait, il convient d’instituer la ventilation mécanique en limitant la pression de crête. Plusieurs techniques peuvent être utilisées : simple modification de la fréquence et du volume courant, véritable hypercapnie permissive (contre-indiquée en cas de lésions traumatiques cérébrales associées), et surtout jet-ventilation à haute fréquence (JVHF). La JVHF permet en effet de diminuer considérablement le régime de pression intrathoracique et de diminuer effectivement l’incidence des embolies gazeuses systémiques  [28] . De plus, au cours des contusions pulmonaires très sévères, la JVHF est souvent le seul moyen de corriger une hypoxémie sévère  (figure 3) [29] . L’échographie transoesophagienne permet de vérifier la présence ou l’absence d’embolies gazeuses d’origine pulmonaire selon les conditions ventilatoires  [26] . La recherche d’un pneumothorax nécessitant un drainage thoracique permet parfois d’améliorer notablement certaines victimes.

Fig. 3. Effets de la jet-ventilation à haute fréquence (JVHF) sur la pression artérielle en oxygène (PaO2) et en dioxyde de carbone (PaCO2) de patients ayant une contusion pulmonaire sévère responsable d’une hypoxémie menaçante dans les 24 premières heures. VC : ventilation conventionnelle ; * P < 0,05 versus VC. D’après Zaier et al  [29] .

Lorsque l’oedème pulmonaire hémorragique du blast est considérable il peut induire une hypovolémie, une perte protéique importante, une anémie, et parfois une fibrinolyse due à la contusion pulmonaire sévère  [30] . Là encore la JVHF peut jouer un rôle important en maintenant une pression alvéolaire notable. La surveillance de ce remplissage est au mieux assurée par l’échographie transoesophagienne associée au cathétérisme de Swan-Ganz, la première permettant de mieux comprendre les valeurs de pressions du cathérisme droit et d’évaluer de manière fiable la fonction cardiaque (contusion cardiaque ?) et la volémie, le deuxième assurant un monitorage continu de la pression d’occlusion de l’artère pulmonaire. Les anomalies de l’hémostase (hémodilution, rarement fibrinolyse) doivent être rapidement corrigées car elles participent à l’aggravation de l’hémorragie intrapulmonaire  [28] . Dans la correction de ces anomalies, le maintien d’une hématocrite correcte est un facteur trop souvent négligé. Dans quelques rares cas de fibrinolyse, l’apport d’aprotinine (1 million d’UIK) nous a semblé intéressant.

Comme dans les contusions pulmonaires graves, les décisions d’investigations complémentaires ou d’interventions chirurgicales doivent être pesées. La chirurgie doit être limitée au risque vital immédiat. L’impossibilité de mobiliser certains patients sous JVHF impose parfois une chirurgie au lit (parage, fixateur externe, amputation). Devant la possibilité de pneumothorax, de pneumopéritoine, de pneumatocèle, le protoxyde d’azote est formellement contre-indiqué.

On insiste beaucoup sur la prise en charge psychiatrique précoce des victimes d’attentat. Mais les victimes d’accidents (plus nombreuses mais « médiatiquement » moins innocentes) ne devraient-elles pas bénéficier également d’une telle prise en charge ?

CONCLUSION

Tout médecin confronté aux urgences peut avoir à prendre en charge des victimes de blast. Des notions simples permettent de pratiquer un bilan lésionnel rapide, facilitant un triage efficace de nombreuses victimes. Le pronostic fonctionnel à distance est lié aux séquelles auditives et psychologiques. Le pronostic vital est lié aux lésions pulmonaires, plus rarement aux lésions digestives.

Publicités

Laisser un commentaire

Choisissez une méthode de connexion pour poster votre commentaire:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s